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RATTIONAL AERONAUTICS AND SPACE ADMINISTRATION

ON THE THEORY OF THE INSTABILITY OF THE TWO-
DIMENSIONAL STAGNATION-POINT FLOW®
By Gunther Hammerlin

Abstract. - In this work we are concerned with the solution of the
differential equations (1) to which H. Gortler was led by his assumption
of a three-dimensional instability of the two-dimensional stagnation-
point flow (see preceding paper). These differential equations can be
solved in a region 17 2> N, Wwhere, for the function F occurring in the

coefficients, its asymptotic form may be substituted with the boundary
conditions satisfied at infinity. In order to determine the eigenvalues
the solutions for 7 2> n, and 71 <n, must agree at the point 1 = 7,
We first consider the neutral disturbances (B = 0). By the analytical

method it was found that all a2 values in the interval 0 < <1 are
eigenvalues, With the program controlled Z 4 computer at the E.T.H.
Zurich, the interval was further scanned for eigenvalues up to Qe = 5.
However, no additional eigenvalues were found. Further, it was shown
that in addition to the neutral disturbances, true unstable disturbances
also exist.

I. STATEMENT OF THE PROBLEM

In the eigenvalue problem, which leads to the assumption of a
three-dimensional instability of the stagnation-point flow, we are deal-
ing with the system of differential equations (as shown by H. GOrtler

in the preceding paper).l
L{u] = 3F'u - F'v

(1)
L™ - @] = L[u")

¥rgur Instabilitatstheorie der ebenen Staupunktstromung."” 50 Jahre
Grenzschichtforschung, Friedr. Vieweg & Sohn (Braunschweig), 1955, pp.
315-327.

lror simplicity, the disturbance amplitude functions denoted as uj
and v, by Gortler are here denoted as u and v.

E-110



with the operator

_afa 2 2
L_dn{dn+F}'“ (2)

These differentlal equations are to be solved under the following bound-
ary conditions:

u(0) = v(0) = v'(0) = 0,

u(=) =0, v(n) = 0(n) for M+ =, v'(=) = 0

We are interested in the solutions for real positive values of a (i.e.,

positive values of the eigenvalue parameter 3,2).3

F(n) is a numerically given function, for which in 1 > 1, (no = 4):

F(n) =1 -c¢ c = 0.6479004
F'' =1 (2)
F" =0

[NACA note: There are two equations numbered (2) in the original docu-
ment.] Furthermore, F(0) = F'(0) = 0 and F(7) monotonically approaches
the asymptotic form (eq. (2)).

When written, the system (1), after simple transformation, reads

u" + Fu' - (2F' + Ez)u = -F"v

R ST (F' - 2c_x,2)v" - @%F - F)v' o+

[‘az(az -F') 4+ F"]v = 2(F'u)" (3)

II. THE SOLUTION wu(n)

We shall first satisfy the equations (1) in the interval 1n > Mo

for the boundary conditions satisfied at infinity. The requirement that
these solutions (outer solutions) , agree with the solutions in the

CPirst » we consider the neutral disturbances (§ = 0) , and return to
the unstable disturbances (B > 0) in section VIII.

3Namely, we have o = -2{-(-& (see H. GOrtler).
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interval n< 74 (inner solutions) at the point =Ty will give us

a condition for the eigenvalues E?.

Setting

vV -av-u'

o0}
[

and

d
- C = t T e——
n T} dY'

we write the following equations (1) for TZ 7, (corresponding to
1> M)

"+ 1u' - (5,2+2)u=0
g" +71g' - (@€ -1)g=0
V' -alv=g+u (4)
uf=) = 0 v(r) = o(y)
vi(=) =0
The first two of equations (4) are of the type
y'+axy' +dy =0

According to reference 1, p. 475 (10) the general solution of this
differential equation is

where

?(i,m,z) = CiMy p(z) + Oy _p(z)

“In this report the symbol o ) refers to the behavior at infinity.



and where, as usual,

1
=m -Sz
My o(z) = 2 e @ lFl(%- +m-k; 2m+ 1; z)
1 m Z
S 7% 1
Mk,_m(z) = z2 e 2 1Fl(§ -m =~ k; -2m + 1; z)

with

2 3
giz) =1+ 2 g 0l +1) 2% plp+1) (p+2) 2>
1F1(p’°’z)‘l+oz+oic+1$ 2! +o(o+17 (o + 2) Zrt

denoting the Kummer confluent hypergeometric function.

Setting

a=1, b=-(G%+ 2),

the general solution of the first of the differential equations (4) is
thus found to be

%’%Jz 1 2\4 '22 P4 351 2
a
u(y) =7 “e Cl(-T) e 1F1(—_‘5§5§7>+

-—Y _—2 —2‘
2 a” +4 3 1L 2 a”+3 1 1 _2
u(r)=e ATlFl( 5 ;§;§Y>+BlFl<——2—;§;§Y) (5)

In order to satisfy the boundary condition u(®) = 0 we must know the
asymptotic behavior of lFl'
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According to reference 2, page 271, we have

b - 1)! -
1F1 (a5052) ”Tb—(-—a._-_Ll)T (-z)™*

1.,,2 (-1) & {a+v - 1)a-b+1). . (a-Db+v) .

Vel iz
L
- 4 - - - « o o - -
:.-éll. ! eZ, %P l+zil a). . (v «a)(b - a) (b-a+v -1) +
° v=1 vz’
and, therefore,
1 Tord
—2 =1 2 2.
TF(& +4~§-372)~ 2 (; T-(‘&+5)
I\Tz 3273 43, \ 2
- = ]
00
G+ 4 (v+cx.2+2)‘u'.2+5 (v+a.2+1)
1+ (_l)v 2 2 2 2
1 z)v
e
v=1 v.<2'r
-2
1, 1 &4
z 27 (1) @ .‘Ez+2
=z ¢ \z
ac + 2
= !
o0
(a2+2) _Ez+4)_u.2+1) (__24»
1+ T T2 v 2 2 : 2
v
v!(%rz)
v=1
'6,2+3
32 1.1 (’ %)' 1) 2 (&2+3)
. + -l
1F1<a 7 ’2;572)" = ("2') T ()
a® + 41\,
"D,
-3
T4 3 +<1.2-4»2L T4 4 +—2+2
v _ 2 v z 2 \Y z
1+ (-1) +
1 gv
v!(—r)
V= 2
-2
e 12 u.g-z
2 2z (1 r€2+2
=2 € z
+ 1,
= !

v=1
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Since the corresponding series with the factor er / 2 of the two
expansions (eq. (6)) are identical, we have

12

-3 T2 +4. 3 1 2 Te+3 1. 1
lim u(y) = lim e 2 ArlFl<°'2 5935 T +B]_Fl°b2 ;E;EYZ>
T Yoo

35+ a2
1, 2 - l): 2
- — 2 (%) +B— 2 (%) 1m v Y2 1+ o(1)}
a + 2 ' 04 + l ' rﬂ)w
7 z

as

B=- A (7)

we obtain

lim u(y) = 0
T

Thus, the solution of the first differential equation of equations
(4) under the single boundary condition u(x) = 0 1is

12 _2 4l 4,
alr) = ae 2 13'1(GL 7 3 3 YZ) == 11“1<OL 725 5 3 TZ)
23t + 2 :
(8)
Therefore, 12
u(r) = A g(@)e 2 ——_—é}-—— 1+ o(1)}
Yo© + 3

III. THE GENERAL SOLUTION +v(r)

For the general solution of the second equation of equations (4) it
is necessary to replace (a° + 2) by (G° - 1) in equation (5),
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=2 .
glr) = e 2 lor 1F1(°“22+ 352 7‘2) +D lFl(%E; 253 rz) (9)
and with this g(y) the differential equation
V' -G=g 4+ (10)
is to be solved under the boundary conditions
v(r) = ofr)
v' (w) 0

This will be done by the variation of constants method.

A fundamental system of the homogeneous part of equation (10) is

eq‘r, e” . The general solution of differential equation (10) is,
therefore,
v{r) = K-e™ + Le™a¥ 4 cl(T)an + cz(*r)e'EY
where
Y 1 =
c(r) = - f L——; L e-at g¢
Yo '
Y v —
colr) = f EX R Ot gt
W
Yo
and the Wronskian is W = -2a; hence,

—_ — - T -
v(y) = Ke™ + Le™ + L or f (g + w)e™¥ at -
Za
Yo
1l -ar L4 aYy
— e (g +u')e” dat (11)
7. o

We investigate the asymptotic behavior of solution (11). For this
purpose we first require u' (r), which is computed by the formula (see
sec. IX). If

3.1.2 1,112
£r) = e Y 1F1<35 Al ) -0 1F1(a -3i5ST ) (12)




(p,o constants), then

2
ar "z 1
'a.—r' = - € 2 %20’(& - l)T lFl (8- - -é';

According to equation (8) we have

L2
u'(y) = -Ae
o+ 0
2 a“ +3_ 3
'\/é =z T 1F1< 55 3
2
hence
L2
u'(r) = - Ae C )\1(&) —2

5Moreover, we have \,(a) = A (@).
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Thus, the asymptotic integration of the sum (g + u') occurring under the
integrands in equation (11) is

1
g + u' = A,(%,4,C,D) Yl—_a? {1+ o(1)}

where the constants C and D are still undetermined.
w —
Since the integral f (g + u')e-d‘t dt exists for every value
Yo
a > 0 we can replace expression (ll) with

OTT-&

. _ _ .
v(r) = {K + L / (g + u')e-d’t atje™ + L™ -
% Ao |

1 = Y _
L eor f (g + u')e® at (13)
2 ro

[~}
P, f (g + u')e'a‘t dt -
2o T

IV. SATISFYING THE BOURDARY CONDITIONS FOR O < Gl < 1
We assert the following conditions: If in equation (13) we choose
1 ® -Gt
- e — t
K = zaf (g + u')e dt
Yo

we cause the term with ea'Y to drop out. The solution v(y) thereby
determined satisfies the boundary conditions v(r) = o(yv), and v'(y) =+ 0
for Y+ «, if, in addition, 0 < G2 < 1. '

Namely, we have
a ® at q ® Qo
|ed'r f (g + u)e™ dtl < |ea'T(g + u')tz.r / e™® dtl =
Y L

|é(g+u')r = ofr), it 0< @< 2
09 .
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Further, we have

- '8 - -
e~ T f (g + u')e®t at = e~ f Ay ——5 1 et at
| To tl'“ v

YO
- T
e~ A %t at {1 + o(1)} =
2 1"2
Yo @
- - E—To =2 _ T
Age™® Loear 1 _.._}__e 1 2 -1 1 _ Gtlay {1+ 0(1)}=
T = 3 1% @ Jpo 23
rt To t
(3 1 2
»(3,A,C,D) = > 1 +o(1)} =oly) for 0<T*<2

As we have Jjust shown, the solution

O - T
v(r):Le'a'r--}—arf (g+u)ea'tdt-—15-ec'rf (g+u‘)emdt
-5 Yo
(14)
satisfied the first boundary condition. We have

- = _ T _
vi(Y) = -de™ - = e(LT / (g + u')e ™t at +x 5 e ¥ / (g + u')e®t at
Yo

With the same considerations as given previously, the second boundary
condition v'(w) = 0 is satisfied for 0 < G2 < 1.

-2
V. SATISFYING THE BOUNDARY CONDITIONS FOR o > 1
Ir & > 1, the two boundary conditions for v(y) cannot be satis-
fied without determining another of the free constants C, D, and L.
For this purpose in equation (9) we must g.rop the part of the asymptotic

development of g mnot decreasing as e -7 / by determining C as a
function of D analogously to what was done in deriving equation (7).
This is attained through

el
]
}—I
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Pz = Py
0y = 0,
oL =0
oy = Fog - (F' - @log + (@F - F")o, G(@ - F')o + F" o + (15)

¢2 = u! @4 = v' (93(0) =0
q)s = v" @4(0) =0
og = v

Owing to the continuity of the coefficients of this system in
0 < 1n < mn,, the Lipschitz condition is entirely satisfied in this inter-
val; therefore, six linearly independent fundamental solutions of the
system (15) exist in this interior region.

In order to connect the outer and inmer solutions at 7 = 7,4, it
is required that (no =7, + c)

Va(no)

wy(n,) = u (n,) v (n,)

uy (n,)

w (n,) vi(ng) = vi(n))

vi' (ng) = va(n,)

"t L1A)
vi'(ng) = viuln,)
The reguirements of the connecting outer and inner solutions and
the as yet unsatisfied boundary conditions for the inner solutions at
n = O represent nine conditions. These are nine homogeneous equations
for the six constants of the inner solutions and the still free constants

of the outer solutions.
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Let us again consider the interval O < 'c'iz <1l. For each choice of

T2 1in this interval four free constants (A, C, D, and L) are available
from the external solutions. Thus, for each a in 0< G2 <1 we have
to satisfy nine homogeneous equations for a total of ten unknowns; this

15 always possible. In this way values O < '&2 < 1 form a continuum of

elgenvalues.

The question now arises whether there are also eigenvalues among

the values E?‘ > 1. We must modify our considerations adduced in the
preceding paragraphs because we only have three further constants of the
external solutions at our disposal. This leads to nine homogeneous equa-
tions for nine unknowns. The question as to the solubility of this sys-
tem, without the aid of numerical methods, can only be answered if we
know a fundamental system of equation (15) For this reason, our eigen-
value problem was attacked numerically.

VII. NUMERICAL INVESTIGATIONS WITH THE Z 4 COMPUTER

The Institute for Applied Mathematics of the E. T. H. Zurich
(directed by Dr. E. Stiefel) has kindly taken over the problem. Under
the guidance of Dr. Mahly, the interval O < onz <5 was investigated
with the aid of the program-controlled Z 4 computer. The computation
on the Z 4 was preceded by further extensive theoretical investigations
under Dr. Mahly, whom I also thank for his suggestions in regard to the
preceding considerations.

Since a more accurate presentation of the work done in Zurich would
extend far beyond the limitations of the present report, we restrict
ourselves here to a brief summary and mentioning of the results achieved.

Starting with 1 = 5, the integration of differential equations (1)
toward zero was begun with steps of 0.2. The value 1 =5 was found
favorable for the starting point of the integration because a value of
11 was to be chosen at which the asymptotic properties and the solutions
of the differential equations are satisfied with sufficient accuracy,
while the Integration toward zero involves small errors.

As previously shown, three of the exponentially rising fundamentsl
solutions are avallable. These solutions are combined linearly in such
a manner that u(0) = v(0) = 0. For u =0, v =0, and g =0 not to
be obtained from the differential equations (1), at least one of the

6On the basis of a heuristic consideration Dr. Mi-:ihly first expresesed
the theory that 'all O <32 <1 values are eigenvalues.

OTT-¥
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three values g(0), g'(0), and u'(0) must be different from zero.
Accordingly, in order to satisfy the third boundary condition v'(0),
at least one of the three magnitudes

v'(0) v'(0) v’ go; 7
g(0) ? g'(0)’ u'(0

must vanish. These tests were conducted by rgpeatedly carrying out the

computation for variously chosen values of &°.

The evaluation showed that no eigenvalues exist in the interval

0<al<5 if only fundsmental solutions, which drop exponentisally
toward infinity, are admitted. The region T >5 has not yet been in-
vestiga:l:ed.8 As shown previously, the continucusly distributed eigen-
values in 0 < T2 < 1 give a weakly decreasing power solution in addi-
tion to these solutions falling exponentially toward infinity.

VIII. UNSTABLE DISTURBANCES

The question arises whether in addition to the neutral disturbances
(B = 0) thus far considered, unstable disturbances (B > 0) also exist.
The differential equations of such unstable disturbances are obtained
from equation (1) if the operator

d §d =2
L—Eﬁ{—d-ﬁ"'F}’ (§+Q)
1s applied. With the same considerations that we have adduced for the
case __73- = 0, 1t can be shown thaf solutions exist for all values o >0
and B> 0 for which O0< B + 3L < 1, so that all these values form
eigenvalue palrs. However, nothing can be said as to the existence of
such eigenvalue pairs in the interval B + a2 > 1. For this reason the

‘numerical computations must be carried out anew in a suitable ma.nner.9

7’.I'he introduction of these fractions was found very useful in set-
ting up the computer program.
BFrom physical considerations, additional eigenvalues for f> 5
are hardly to be expected. (This means very small vortex dimensions.)
9similarly, for damped disturbances (B < 0) all values O< B + af <1

form eigenvalue pairs. However, further results that are only of small
interest can here be stated.
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IX. PROOF OF FORMULA (12)

If 1
2 5.1.2 1.1 1

£(y) = e {p‘f 1F1 (*” 2337 > - 0 1F; (a i Yz)}

then

ae_ U 1,3 1 2 1.1 .2
E?-’e {20(“'1)71F1<3"'2')'2':’§T>'01F1<a-l,-§,—2-7‘>}

From the series

OTT-d

1F1(a5b52) = 1 +

it is seen that

d a
= 1F1(a;b;5z) 5 1Fi(a + 1; b + 1; z)

so that

d 1.2 a 1.2
EFlF1<a5 b;-ﬁr)=r%—lli‘l<a+l;b+l;-§r>

We then have

1l 3 1
or(2a - 1);F) (a + 355555 YZ)}

Using the recursion formula (ref. 2, p. 271, 3)

a 1F1(a + 1; b+ 1; z) = (a - b);F;(a; b + 15 z) + b 1F1(a; b; z)

ol &
hs
‘—I
“p
+
[}
e
nlon
-
ol
_‘m
~——
1
hy
’,—I
o
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ol
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I
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ofon
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replace a by (a - 1/2), so that

1
'b=-2-.
1.1.1.2 1.3.1.2
1Fl(a.-§,-2-,2r)—(Za-l)lFl(a+2, 2,27) ,
1.3.1_2
-2(1-a)1F1(a-‘z'» §’§T>
Thus

12
Ef; = e--é.r 2 --— - -3
dY = oY
1,3
or2(1 - &) ( 35 %
In the recursion formula (ref. 2, p. 271)

z ;F1(a + 1; b+ 1; 2) =b ;Fy(a+ 1; b; z) - b ;F(a; b; 2)

replace a by (a - 1), so that

In the recursion formula (ref. 2, p. 271, 3)
a F(a+1;b+1;52)= (2 - b)yF;(a; b + 1; z) + b ;F;(a; b; z)

replace & by (a - 1), so that

3 1 3.1_.2 1,1 2
(28--2)11'1(3-5 55-2-72)-(23-3)1F1(3-1;§,'§T)-1Fl(a-l,-§ -z'f)



1l.1.2 1,31
{"1’-‘"1(& "Ly ) - 2o(a - 1)y 1F1(a -3 3 3 rz)} -

12
il 1.3 1.2
£ {2"(& - lFl(“' 53537 )-pafla- 153 507

The- cdfﬁggppess of formula (12) has thus been demonstrated.
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